A basic class of symmetric orthogonal functions with six free parameters

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Multivariate Orthogonal Refinable Functions

In this paper, we shall investigate the symmetry property of a multivariate orthogonal M -refinable function with a general dilation matrix M . For an orthogonal M -refinable function φ such that φ is symmetric about a point (centro-symmetric) and φ provides approximation order k, we show that φ must be an orthogonal M -refinable function that generates a generalized coiflet of order k. Next, w...

متن کامل

Noncommutative symmetric functions with matrix parameters

Abstract. We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki.

متن کامل

Compactly Supported Orthogonal Symmetric Scaling Functions

Daubechies 5] showed that, except for the Haar function, there exist no compactly supported orthogonal symmetric scaling functions for the dilation q = 2. Nevertheless, such scaling functions do exist for dilations q > 2 (as evidenced by Chui and Lian's construction 3] for q = 3); these functions are the main object of this paper. We construct new symmetric scaling functions and introduce the \...

متن کامل

Basic Hypergeometric Functions and Orthogonal Laurent Polynomials

A three-complex-parameter class of orthogonal Laurent polynomials on the unit circle associated with basic hypergeometric or q-hypergeometric functions is considered. To be precise, we consider the orthogonality properties of the sequence of polynomials { 2Φ1(q−n, qb+1; q−c+b−n; q, qz)}n=0, where 0 < q < 1 and the complex parameters b, c and d are such that b = −1,−2, . . ., c− b+ 1 = −1,−2, . ...

متن کامل

Solving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions

In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2010

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.12.025